‘Zonderling lugtverschijnsel’ bracht republiek in rep en roer

Ruim twee eeuwen geleden zorgde een heel heldere meteoor of vuurbol met een langdurig nalichtend spoor voor flink wat opschudding in ons land.

Nederland heette toen de Bataafse Republiek en het was nog een tijd dat zich hoog boven de hoofden van onze voorouders lucht- en lichtverschijnselen voordeden die niemand goed begreep. Een vallende ster was zo’n verschijnsel. Er bestonden wel theorieën volgens welke de oorzaak van dit fenomeen buiten de aarde moest worden gezocht, maar bewijzen waren er nog niet. Pas in de loop van de negentiende eeuw begonnen de geleerden de ware aard van meteoren te doorgronden.

Op woensdagavond 23 oktober 1805 werd de drost van het elfde drostambt van Friesland (Menaldumadeel, Het Bilt en Ferwerderadeel) opgeschrikt door een “zonderling lugtverschijnsel”. De drost heette Daniël Hermannus Beucker Andreae,  Hij gaf een zakelijke weergave van zijn waarneming  en waagde zich niet aan een verklaring:

 “23-10 [-1805] ’s av. tusschen 7 en 8 uur vertoonde zich een zonderling lugtverschijnsel, door mij zelfs gezien digt bij Harlingen, doch niet in ’t begin. In ’t eerst was het even een zich zeer snel bewegende vuurbal of liever een vurige lijn, gevende een uitnemend helder ligt van zich, zoo dat alles meer verligt was als volle maan, weldra deelde zich deze lijn in twee evenwijdige allengs weer meer zich krommende als een S, bij na int zenith war het ligt langszaam verflauwde, veel hebbende van den glans van het noorderligt, of flauwe phosphorische damp, war door heen men de starren kon zien, ’t wierd eindelijk een klein wolkje of vlokje, doch heeft van ’t begin af wel een groot quartier zeer zichtbaar geweest in de hele republiek, waaruit blijkt dat het in ’t allerhoogste deel der dampkring heeft plaats gehad.

Ook Bartholomeus Doorenweerd wist niet wat hem op die woensdagavond 23 oktober 1805 overkwam toen hij getuige was van het vurige verschijnsel aan het firmament. Hij was de pastoor van Emmeloord, destijds een dorpje op het eiland Schokland in de Zuiderzee, hemelsbreed 65 kilometer van Harlingen verwijderd. Doorenweerd schreef er het volgende over in zijn Pastoraal Handboekje:

Ik ben wel geene bijgelovige aanschouwer der natuurverschijnzelen, dog hij die de geheele natuur in zijne magt heeft kan dezelve na zijn welgevallen gebruiken. Het ontbreekt in de geschiedenissen aan geene voorbeelden, dat buitengewoonlijke luchtsvernevelingen van God tot voorbetekenissen en waarschouwingen gediend hebben. 

Het mogte eens zóó zijn, dan verdiend het geweeten te worden, dat ik den 23 october dezes 1805, iets over zeven uuren ‘s avonds, te Emmeloord een vurig luchtverschijnzel zage. De wind was oost‑noord‑oost, de hemel zeer helder, de koude koelde. Een vuurstraal kwam met den wind over, zettende zich boven Emmeloord, hadt aan het westelijke einde een groote vuurkring, die een kop konde verbeelden, en was oostwaards in gekronkeld, zoodat het een vuurdraak kan genoemd worden. Het verdween in eene lichte wolkje.

God behoede deze Gemeente van pest en brand! Geeve zijnen volke Godsdienstige harten. Dat luchtverschijnzel moet ongemeen hoog in den dampkring geweest zijn, dewijl het niet alleen bijna door de geheele Republiek gezien is, maar ook veele menschen, die eenige uuren van elkanderen af waaren, het als recht boven hunne hoofden gezien hebben.

Merkwaardig luchtverschynsel, of vuurbol op 23 oktober 1805. Klik op de afbeelding voor de volledige afbeelding van de pagina.

Meer verslagen van de vuurbol

In de dagen en weken na 23 oktober 1805 verschenen in de couranten en andere publicaties berichten over de vuurbol. De correspondent van De Haagsche Courant in Duitsland meldde op 4 november 1805:

“Verleden woensdag den 23 dezer, hadden wy alhier te Hamburg in den avond omstreeks zeven uuren, een schoon luchtverschynsel, namentlyk, er vertoonde zich aan de zichteinder een groote vuurbol, die met een sterke slag uit een berstte, en daar door een zeer lange slangswyzen vuurstaart formeerde, die naa de uitbersting over de tien minuten zichtbaar was.” De redactie van de courant voegde hieraan toe: “Men heeft alhier in den Haag op dienzelfden dag en omstreeks dezenzelfden tijd, iets dergelyks buitengewoon in het Noord-Oosten aan den luchthemel in een kleine wolk, vry hoog boven den horisont gezien.

In een andere publicatie werd uitvoerige stilgestaan met het “Merkwaardig luchtverschynsel of vuur-bol, welke op den avond van den 23sten october 1805, te Amsterdam, en op vele andere plaatsen is gezien geworden, en waar van duizenden menschen ooggetuigen zyn geweest.

In deze uiteenzetting wordt de lezer gewaarschuwd tegen bijgeloof dat nog volop tierde over tekens aan de hemel. Bijgeloof waaraan zelfs pastoor Bartholomeus Doorenweerd zich schuldig maakte. Uitgelegd wordt dat kometen en luchtverschijnselen, zoals vuurbollen, net zo goed voortbrengselen zijn van de natuur als de Nieuwe en Volle Maan of wind en regen. Waarachtige Christenen moeten zich niet gedragen als bijgelovige heidenen. De goedertieren God gebruikt immers geen ‘onwisse’ en twijfelachtige middelen of wondertekens om de mensen te waarschuwen.

Als voorbeeld werd een komeet genoemd die hier was verschenen; er gebeurde niets merkwaardigs, maar na enige tijd brak in ons land de veepest uit. Was die ziekte een gevolg van de komeet? De komeet had zich aan “alle volken der aarde” vertoond, maar hebben al die volken ook de veepest gehad? Inderdaad, zo was de conclusie, dit is een te zotte vraag om er ook maar een moment bij stil te staan.

De schrijver legde uit, dat de vuurbol van 23 oktober 1805 een gewoon luchtverschijnsel was, dat alle overeenkomsten heeft met de zogenaamde vallende sterren, die heel vaak te zien zijn. Ze zijn van dezelfde aard, doch verschillen in grootte “want indien het vurige verschynsel der vallende of verschietende sterren eenige malen grooter was, dan het gewoonlyk is, zoude het ook een helder en glansryk licht van zich geven, en in een heldere lucht rondöm zich verspreiden, en die meerdere groote en snelle beweging, zou noodwendig, een grooter tegenstand der lucht ontmoeten, en daar door allerlei kromme en slangsgewijze gedaanten vertoonen, net zoo als by het groote luchtverschynsel is gebeurd.” In deze publicatie werd ook in het kort verwezen naar andere vuurbollen:

Den 8 Maart 1798, te Geneve in Zwitserland, een verbazend groote vuurbol, die een helder licht en veele vonken van zich gaf.

Den 6 november 1803. Zag men in het naburige Engeland, des avonds half 9 uuren een merkwaardig groote vuurbol, zo sterk van glans; dat het volkomen helder dag geleek; dit verschynsel scheen veele vonken en vuurvlammen uit te braken.

Behalven deze, zoo groote vuurbollen, zouden wy nog van eene menigte andere kunnen verhalen: als te Roquefort 1 en L ‘Aigle 2 in Frankrijk enz. en waarlyk er gaat geen jaar voorby, of men ziet zoo hier als elders verscheidenemale vurige verschynsels.

De publicatie bevat een ‘toe-zang’ of vers, waarin de dichter, geïnspireerd door de vuurbol, de spot drijft met bijgeloof. Hier volgen de laatste drie coupletten van dat vers:

Wat Luchtverschynsel zag men niet
In stille Vredens dagen;
Hoe menig onverwagt verdriet
Kwam zonder voorboo plagen!
Of heeft men in den Sterrekring,
Toen Lissabon ten gronde ging 3,
Ook al voor af gelezen,
Wat ramp er stond te vrezen?

Nog nader ! toen het Oorlogsvuur
Onlangs Noord-Holland blaakte 4,
Zeg my, welk wonder der Natuur
Zulks vooraf kenbaar maakte!
Ach! Had gy toen zoo’n bol gezien,
Dan had de Landman kunnen vliën,
Dan konden dankb’re toonen,
Den Ramp-voorspeller lonen.

Neen! Zoekt geen nad’rend ongeval
Aan ’t Lucht-gewelf te lezen;
Maar dank den Schepper van ’t Heeläl
Voor ’t goede ons nog bewezen:
Toont dat gy braaf en eerlyk denkt;
Weest dapper als de nood u wenkt;
Zoo hoor’ GOD onze beede,
En schenke ’t Menschen VREDE!.

De verhandelingen in de artikelen geven een intrigerend inzicht in de beleving van de hemelverschijnselen die wetenschappelijk nog niet op dezelfde wijze doorgrond werden als vandaag de dag.

Voetnoten:

1 Meteorietdropping nabij Roquefort, Zuid-Frankrijk, 24 juli 1790
2 Meteorietenregen in L’Aigle, Normandië, 26 april 1803
3 op 1 november 1755 werd Lissabon vrijwel geheel verwoest door een aardbeving, gevolgd door brand en een tsunami.
4 Mogelijk bedoeld de (mislukte) Brits-Russische militaire invasie van Noord-Holland (1799) gericht tegen Frankrijk, waarvan de Bataafse Republiek een vazalstaat was.

Bronnen:
  • Aantekeningen Daniël Hermannus Beucker Andreae (uit Almanakken in Museum van Haren, Heerenveen);
  • Pastoor B. Doorenweerd, ‘Pastoraal Handboekje of verzameling van gedagten, waarneemingen en gebeurtenissen, dienstig voor eenen Harder der Gemeente’, blz. 371‑373;
  • Bruno Klappe, Schokker Erf 58, januari 2005;
  • De Haagsche Courant, 4 november 1805;
  • ‘Merkwaardig luchtverschijnsel, of vuurbol, welke op den avond van den 23sten october 1805 te Amsterdam, en op veele andere plaatsen is gezien geworden, en waar van duizende menschen ooggetuigen zijn geweest, Volume 1’, uitgever M. van Kolm, 1806, Koninklijke Bibliotheek.

 


Tekstbijdrage: Urijan Poerink

FRIPON-NL: Extending the French all-sky fireball camera network to The Netherlands

By: Detlef Koschny, Andrea Toni.

The Fireball Recovery and InterPlanetary Observation Network (FRIPON) is currently operational in France and includes about 100 cameras. Based on the French FRIPON system, a new fireball camera network is currently being extended to the Netherlands, offering new opportunities for scientific research, fireball detections and even meteorite recovery.

Figure 1: The FRIPON camera installed on top of ESA/ESTEC in Noordwijk.

FRIPON is an all-sky camera network with the aim of detecting fireballs and computing their trajectories. By computing the ‘dark flight’ of surviving pieces of the meteoroid, the location (strewn field) of meteorites from the fireball can be predicted. This is the ultimate goal of the project, funded by the French National Research Agency: to find meteorites on the ground and link them, via the orbit determined from the observation of the fireball, to its parent object. The IMCCE (Institut de Mécanique Céleste et de Calcul des Éphémérides) in Paris has developed and commercialized the camera hardware, installed a central server, and designed the detection and data processing software. Almost 100 cameras are operational in France, and the data processing part is in the final stages of implementation.

The Meteor Research Group at ESA’s Science Support Office is currently operating a double-station meteor camera system on the Canary Islands called CILBO (Canary Islands Long-Baseline Observatory). It records meteors down to fainter than magnitude 5. It will saturate for meteors brighter than magnitude 0. To extend our observations to larger objects, or brighter magnitudes, we decided to get started with all-sky fireball cameras. Rather than developing our own system we decided to use something which already exists. Due to existing contacts to the IMCCE, we decided that we would expand the FRIPON system to the Netherlands.

Science rationale

The initial science rationale of FRIPON was to increase the number of meteorites found in France and to link them to their parent bodies. This can be done by observing fireballs – propagating their trajectory backwards will allow to determine their orbits in the Solar System; extrapolating the flight path forward, taking into account wind direction and speed, allows the prediction of the location of any meteorites from the fireball.

For us the science rational for using a FRIPON-based system differs. At the Meteor Research Group of ESA, we have been working on the flux density of meteoroids, i.e. how many meteoroids enter the Earth’s atmosphere per area and time. We did this by using data from our double-station meteor video camera system on the Canary Islands (CILBO). For meteors brighter than about magnitude 0 this system will go in saturation. Depending on the material and the velocity of the object, this corresponds to meteoroid diameters of about 2 mm to about 3 cm. With the data from FRIPON, the flux densities of larger objects can be determined.

Another important potential science result will be to compute the luminous efficiency. This is the percentage of kinetic energy of the meteoroid which is converted to light. I.e., if I want to compute the mass (or size) of a meteoroid from the magnitude, I need to know this number. With just the brightness curve of a meteor, this value cannot be determined. For our CILBO setup, we have used values obtained by simultaneous observations with video and radar systems performed in Canada. Another determination method is to take the deceleration of the meteor into account. The deceleration is best seen for objects larger than what we can detect with CILBO. FRIPON regularly observes this deceleration and allows the determination of the luminous efficiency without requiring another detection technique.

The camera hardware

The FRIPON camera currently installed on top of ESA/ESTEC in Noordwijk is shown in Figure 1; the complete hardware including the computer can be seen in Figure 2. The camera itself is a Basler aca1300-30gm digital camera (older systems have a DMK23g445) operated at 25 frames per second. It is installed in a protective housing with an optical quality transparent dome on top. The camera housing is less than 10 cm in diameter and about 15 cm in height. It is manufactured by the company Shelyak, it costs about 1200 Euro. The included mounting hardware allows it to be installed either on a flat surface or attached to a pole not more than 5 cm in diameter. It has a short Ethernet pigtail cable for connection to the computer.

The power is provided via the same cable. This requires a ‘Power-over-Ethernet’ capable router when connecting the camera. If needed, the camera cable can be extended via a ‘Cat-6’ Ethernet cable to connect to a PoE-capable router. The router connects the camera to the computer and the internet. In principle any computer can be used. We use a ‘NUC’, a ‘Next Unit of Computing’ machine, a very compact computer only about 10 x 10 x 5 cm in size. When purchased with the correct solid state harddisk, the complete software system can be installed via a disk image.

The system does not have a keyboard or monitor – it connects to a server in France and is only accessible remotely via the French computer. If we want to see our own computer, we have to log into the server in France, only from there we can access it. The reason is explained in the section on data processing.

Figure 2: The complete hardware. The camera can be seen on the bubble foil to the left. The black box with the labels is the Power-over-Ethernet router with power supply. To the right the ‘NUC’ computer. This is a system intended for installation in Germany. The NUC for the ESTEC camera can be seen in the background.

Data processing

The NUC reads the image data coming from the camera in real time. Detection software identifies events – it searches for bright objects which move in a straight line. It has some filters, e.g. to reject objects which move too slow. Still, it may detect not only fireballs, but also airplanes or other things. All detections – typically a few per night – are directly sent to a server in Paris, France. There the data from all French, Belgian, and German cameras is collected. An ‘event’ is generated when 3 or more cameras have detections at the same time.

The direct connection to Paris is the reason that the computer cannot be accessed directly – this would violate the security rules, as it might allow hackers to enter the French network. The system sends out email messages once per day, summarizing all events which have been created in the last night. It should also compute the trajectory relative to the ground, the orbit, and potential locations for meteorites. This last part, however, is not yet fully operational.

Status in the Netherlands

To get acquainted with the FRIPON system, we installed a camera on top of ESA’s technology center ESTEC, in Noordwijk, Zuid-Holland. The already mentioned software security regulations exist also at ESA. Therefore, we initially had issues to connect to the Paris network. We finally installed the router in a ‘de-militarized zone’ in our science network. Private networks seem to have no problem – we managed to install and connect the second camera in Oostkapelle within a few hours in an afternoon in November 2017.

These are the two cameras currently in operation in the Netherlands. Figure 3 shows the location of the two stations in green. In addition to Klaas Jobse, who hosts the station in Oostkapelle, we have agreements with Felix Bettonvil (Dwingeloo), Jos Nijlands (Benningbroek), Arnold Tukkers (Lattrop) and Sebastiaan de Vet (Tilburg) to host additional cameras. One camera, funded by the University of Oldenburg, Germany, has been set up in Groningen. We are still looking for hosts for a few more stations. From an internal ESA grant, we have received funding to purchase a few more cameras and additional hosts are still needed. If somebody is interested in Gelderland, contact me! After this  initial expansion, we would like to add additional cameras roughly at the transparent-yellow locations on the map.

Figure 3: Existing and planned camera stations. Green: cameras in place; orange: to be installed in 2018. Yellow/transparent yellow: host still needed.

The first large fireball which we have recorded happened just before my presentation of the camera at last year’s International Meteor Conference, on 21 September 2017 (Figure 4, see also this web article). Before that, we had seen three faint events, always together with the camera in Brussels and one or two other stations in Belgium. However, for a fireball to be observable from both Brussels and Noordwijk it has to be about half way between the two stations and will be low on the horizon from both. Oostkapelle is in a much better distance of about 100 km and we now expect typically one to two fireballs per month.

Figure 4: Fireball over ESTEC on 21 Sep 2017. This event was also recorded by the FRIPON cameras in Brussels/Belgium and Lille/France.

Open points

The cameras are operated in a ‘hands-off’ manner, i.e. the host doesn’t really need to do anything. All the detection and event correlation are done automatically. Still, typically the hosts – like the authors – are interested in accessing the data of their camera directly. Sometimes people ask ‘did you see anything at time xx:xx’ and it would be nice to quickly check the data. While this is possible, logging in via the French server and transferring data is tedious. We are currently setting up a system where all data of the Dutch stations is pushed to an ftp-server hosted at ESA. We are in the process of testing the system, but it is not yet operational.

As mentioned before, the more detailed parts of the software, e.g. the computation of the orbit or prediction of potential meteorite fall areas are not yet final and not yet easily accessible. Together with two Ph.D. students working at the University of Oldenburg, we are involved in the data processing and preparing scientific data analysis routines. In particular we are interested in being quickly informed in a fireball before we read about it in the news.

Summary

FRIPON-NL is in the process of being set up. Currently, two cameras are operational, with 3 more where hosts have been identified. Funding for more cameras is available. Once installed, the network will link together the French and Belgium cameras with those in northern Germany.

The cameras have demonstrated that they can detect fireball events. The data processing – computing the trajectory relative to the Earth, orbits, and possible meteorite fall locations – still needs to be finalized by our French colleagues. ESA is involved from a scientific point of view and to be able to get fast alerts after a fireball has happened.

The cameras have shown to be robust and reliable, and we expect to be able to cover the complete Netherlands by 2019. The network is very complementary to e.g. the CAMS system, which is optimized for fainter meteors, or the three cameras of the German ‘EN’ network which give better positional accuracy but no time information.

We are looking for a few more hosts for cameras, so if you are interested in providing scientifically useful data, please contact the authors.


Detlef Koschny and Andrea Toni work at the Meteor Research Group of the Science Support Office of the European Space Agency, situated at its technical establishment ESTEC in Noordwijk, The Netherlands

Lees hier de Nederlandstalige vertaling van dit artikel.

FRIPON-NL: Frans netwerk van vuurbolcamera’s wordt uitgebreid naar Nederland

Door: Detlef Koschny, Andrea Toni.

FRIPON is het ‘Fireball Recovery and InterPlanetary Observation Network’ dat op dit moment in Frankrijk in bedrijf is met zo’n 100 camera’s. Op basis van het FRIPON-systeem wordt momenteel een nieuw vuurbolcameranetwerk in Nederland uitgerold waarmee nieuwe kansen ontstaan voor wetenschappelijk onderzoek, vuurbolwaarnemingen en meteorietberging.

Figuur 1. De FRIPON-camera op het dak van ESA/ESTEC in Noordwijk.

FRIPON is een allsky-cameranetwerk met het doel om vuurbollen te detecteren om er vervolgens hun banen van te berekenen. Door vervolgens de donkere vluchtfase van overgebleven materiaal te berekenen, kunnen zoeklocaties binnen het strooiveld van de vuurbol worden vastgesteld. Dat is, althans, het hoofddoel van het project dat gefinancierd wordt door het Franse nationale onderzoekagentschap FNRA: meteorieten bergen die met waarnemingen van hun vuurbol te koppelen zijn aan hun bronplanetoïde. Het IMCCE (Institut de Mécanique Céleste et de Calcul des Éphémérides) in Parijs heeft hiervoor de cameraopstelling ontworpen en doorontwikkeld, een server opgezet en dataverwerkingssoftware ontwikkelt voor de detectie en verwerking van de beelden. Inmiddels zijn 100 camera’s operationeel in Frankrijk en is de ‘data pipeline’ in de eindfase van de ontwikkeling en implementatie.

De meteorenonderzoeksgroep bij het ESA Science Support Office werkt momenteel met een tweetal camera’s die simultaan waarnemen vanaf de Canarische Eilanden, genaamd CILBO (Canary Islands Long-Baseline Observatory). Dit systeem is in staat om lichtzwakke meteoren tot magnitude 5 vast te leggen. Een probleem van de gebruikte camera’s is echter dat ze verzadigen al meteoren helderder zijn dan magnitude 0. Op de waarnemingen uit te kunnen breiden naar grotere objecten (en daarmee heldere magnitudes) is recent besloten om te starten met allsky-vuurbolcamera’s. In plaats van een eigen systeem te ontwerpen heeft het team besloten om bestaande appratuur te gebruiken. Dankzij bestaande contacten met het IMCCE is besloten om het FRIPON netwerk uit te breiden naar Nederland.

Wetenschappelijke motivatie

De oorspronkelijke wetenschappelijke motivatie voor FRIPON, zoals al genoemd, is het bergen van meer meteorieten in Frankrijk en het koppelen aan bronplanetoïden.  Dit kan gedaan worden met het waarnemen van vuurbollen; verleng het lichtspoor achterwaarts om de baan in het zonnestelsel te bepalen, verleng het voorwaarts, rekeninghoudend met windrichting en –snelheid, en je kunt een verwachting maken van de plek waar de meteorieten van een vuurbol zijn neergekomen.

Voor de meteorenonderzoeksgroep bij ESA is de wetenschappelijke afweging beduidend anders. Bij de onderzoeksgroep werken we aan de fluxdichtheid van meteoroïden, of in andere woorden, hoeveel meteoroïden treden de aardse atmosfeer per tijd en oppervlak binnen. Zoals gezegd doen we dit op basis van videowaarnemingen met ons simultaanstation op de Canarische Eilanden (CILBO). Meteoren die helderder zijn dan magnitude 0 zorgen voor de verzadiging van het beeld. Afhankelijk van het materiaal en de snelheid correspondeert dat met meteoroïden van 2 mm tot 3 cm in doorsnede. Met gegevens die we verkrijgen met FRIPON kunnen we ook fluxdichtheden bepalen voor groter objecten dan nu het geval is.

Een andere belangrijke wetenschappelijke reden is het berekenen van het lichtrendement. Dit is het percentage van de kinetische energie van een meteoroïde die omgezet wordt in licht. Met andere woorden, als je de massa (of afmeting) van een meteoroïde wilt bepalen op grond van de magnitude, dan moet je deze waarde weten. Met slechts een lichtcurve van een meteoor is het niet mogelijk om deze waarde te berekenen. Voor onze CILBO opstelling gebruiken we op dit moment de waarde die bepaald wordt op basis van gelijktijdige waarnemingen met video en radar in Canada. Een andere methode om het lichtrendement te bepalen is door de afremming van de meteoor mee te nemen. Echter, deze afremming is het beste waarneembaar voor objecten die te groot (helder) zijn om vast te leggen met CILBO. FRIPON legt daarentegen met regelmaat de afremming vast en maakt het dus mogelijk om het lichtrendement te bepalen zonder dat er een andere detectiemethode nodig is.

De cameraopstelling

De FRIPON-camera die momenteel op het dak van ESA-ESTEC in Noordwijk staat, is te zien in Figuur 1, en alle benodigde apparatuur is weergegevens in Figuur 2. De camera zelf is een Basler aca1300-30gm digitale camera (oudere systemen gebruiken een DMK23g445) die filmt met 25 frames per seconde. De camera is gemonteerd in een behuizing met een transparante koepel van optische kwaliteit en is slechts 10 cm in diameter en 15 cm hoog.  Het camerasysteem is speciaal ontworpen door het bedrijf Shelyak en kost zo’n 1.200 Euro. Met de bijgeleverde montagebeugels is het mogelijk om de camerabehuizing op zowel een vlak oppervlak te plaatsen of te monteren op een paal van minder dan 5 cm in diameter.

Figuur 2. Overzicht van alle hardware voor een FRIPON station. De camera ligt links op het bubbelfolie. De zwarte doos met bekabeling is de Power-over-Ethernet router. Geheel rechts ligt de NUC-computer. Dit is een system bedoeld voor plaatsing in Duitsland. De NUC van de camera op ESTEC is te zien op de achtergrond.

De camerabehuizing heeft een korte Ethernetkabel voor de verbinding met een computer, en de stroomvoorziening. Hiervoor is een router met Power-over-Ethernet (PoE) nodig om te camera te kunnen aansluiten. Indien nodig kan de kabel verlengt worden met een Cat-6 ethernetkabel die aan te sluiten is op een voor PoE-geschikte router.  Deze router verbindt de camera met de computer en het internet. Hiervoor kan elk willekeurig type computer gebruikt worden. Wij maken gebruik van een NUC (Next Unit of Computing) dat een compacte computer is van slechts 10x10x5 cm groot. Als je deze aanschaft met de juiste Solid State Harddisk, dan kan het complete software systeem eenvoudig geïnstalleerd worden als disk image.

Het gehele systeem heeft geen toetsenbord of monitor aangezien het direct verbinding maakt met een server in Frankrijk, en daardoor alleen via remote acces via de Franse server te bekijken is. Om op een FRIPON computer te kijken, is het dus nodig om via de server in te loggen en via deze route de computer te benaderen. De reden hiervoor komt hieronder aan bod bij de dataverwerking.

Dataverwerking

De NUC leest de beelddata van de camera in realtime. Detectiesoftware op de NUC zorgt voor de identificatie van events, het zoekt daarvoor naar helder objecten die in een rechte lijn bewegen en verwerpt objecten die te traag zijn. Echter, het systeem zal niet alleen vuurbollen detecteren maar ook vliegtuigen en andere zaken. Alle detecties, gemiddeld een paar per nacht, worden direct naar de centrale server in Parijs gestuurd. Daar komt alle data samen van camera’s die staan opgesteld in Frankrijk, België en Duitsland. Een ‘event’ wordt past aangemaakt als er 3 of meer camera’s een detectie op hetzelfde moment hebben.

De directe verbinding met de server in Parijs is de reden dat de computer niet direct gebruikt kan worden, dit zou in strijd zijn met de veiligheidsregels voor de server, aangezien hackers op die manier direct toegang tot het Franse netwerk kunnen krijgen. Het systeem verstuurt e-mails op dagelijkse basis waarin een overzicht van alle events van de afgelopen nacht zijn samengevat. Hiervan zou het de baan ten opzichte van de grond, de baan in het zonnestelsel en mogelijke strooiveld kunnen berekenen. Dat laatste is echter nog niet operationeel.

Stand van zaken in Nederland

Om zelf bekend te raken met het FRIPON-systeem hebben we een camera geplaatst op het dak van het kantorencomplex van het technologiecentrum ESTEC van ESA gelegen in Noordwijk (Zuid-Holland). De veiligheidsnormen voor netwerken zoals die door het FRIPON netwerk worden aangehouden, zijn ook bij ESA van kracht. Zodoende liepen we aanvankelijk tegen verbindingsproblemen aan om de camera met de server in Parijs te verbinden. Uiteindelijk hebben we de router in een ‘gedemilitariseerde zone’ van ons netwerk geïnstalleerd. Particuliere netwerken hebben geen last van deze problemen, de tweede camera van het netwerk in Oostkapelle werd in november 2017 zonder enig probleem in een paar uur tijd geplaatst en verbonden met de centrale server.

Op dit moment zijn er de twee operationele camera’s in Nederland. In Figuur 3 zijn deze locaties weergegeven in groen. Naast de camera op ESTEC en bij Klaas Jobse (Oostkapelle) hebben we afspraken met Felix Bettonvil (Dwingeloo), Jos Nijlands (Benningbroek), Arnold Tukkers (Lattrop) en Sebastiaan de Vet (Tilburg) om extra camera’s te plaatsen. Eén camera, gefinancierd door de Universiteit van Oldenburg (Duitsland), is opgesteld in Groningen. We zijn zelf nog op zoek naar een aantal locaties om meer stations te huisvesten. Dankzij een interne ESA-beurs hebben we extra financiering ontvangen om een paar extra camera’s aan te schaffen en daarom zijn er nog meer opstellocaties van camera’s nodig. Geïnteresseerden die een camera op een geschikte locatie in Gelderland kunnen huisvesten, kunnen met ons contact opnemen. Na deze eerste uitbreidingsfase in Nederland, willen we nog extra camera’s plaatsen op de geelgekleurde locaties, die te zien zijn op het kaartje.

Figuur 3. Bestaande en geplande camera’s voor de uitbreiding van FRIPON. Groen: geplaatst. Oranje: wordt geplaatst in de loop van 2018. Geel/transparant-geel: vacante locaties waarvoor nog en deelnemer wordt gezocht.

De eerste grote vuurbol die we hebben vastgelegd, vond plaats vlak voordat ik mijn presentatie gaf op het Internationale meteorencongres IMC, op 21 september 2017. Binnen de werkgroep Meteoren beter bekend als de ‘Lubachvuurbol’. De opname van de FRIPON op ESTEC is te zien in Figuur 4, meer details lees je hier en hier.

Voor deze vuurbol hebben we drie zwakkere events gehad, altijd samen met de camera in Brussel en een of twee andere station in België. Echter, een vuurbol die zichtbaar is vanuit zowel Brussel als Noordwijk moet ongeveer halverwege de twee stations liggen. Daardoor verschijnt de vuurbol op de opnames altijd laag aan de horizon voor beide stations. Met een kleinere onderlinge afstand, zoals met Oostkapelle is de afstand van 100 km veel beter en verwachten we typisch een of twee gelijktijdig waargenomen vuurbollen per maand.

Figuur 4. De ‘Lubachvuurbol’ boven ESTEC op 21 september 2017. Dit event werd ook vastgelegd door de FRIPON camera’s in Brussels (B) en Lille (F).

Open punten

Het gebruik van de FRIPON-camera’s is geheel ‘hands-off’ manier, met ander woorden, de gastlocatie hoeft niks te doen. Alle detecties en event-correlaties worden automatisch uitgevoerd. Echter, de betrokkenen zouden, net als de auteurs van dit artikel, geïnteresseerd kunnen zijn om de data van de camera direct te benaderen. Bijvoorbeeld als je gevraagd wordt ‘heb je op dit of dat tijdstip iets gezien’ en dan zou het fijn zijn om de data direct te kunnen benaderen. Dit is natuurlijk mogelijk door in te loggen op de server in Parijs, maar het proces van inloggen en dataoverdracht is langdradig. We zijn daarom bezig met het opzetten van een eigen systeem waarbij alle data van de Nederlandse FRIPON-stations ook naar een ftp-server bij ESA worden gepushed. We zitten in het proces van het testen van dit systeem, maar het is nog niet operationeel.

Zoals hierboven al genoemd, zijn bepaalde delen van de software nog niet af of gemakkelijk toegankelijk, zoals de baanberekening en de berekeningen van de donkere vluchtfase voor het bepalen van strooivelden. Samen met twee promovendi van de Universiteit van Oldenburg zijn we betrokken in de dataverwerking en bereiden we de wetenschappelijke analyse routines voor. We zijn vooral geïnteresseerd om snel geïnformeerd te worden van een vuurbol, nog voordat we erover lezen in het nieuws.

Tot slot

FRIPON-NL bevind zich midden in het opstartproces. Op dit moment zijn twee camera’s operationeel en zijn er afspraken met drie andere gastlocaties. Financiering voor meer camera’s is beschikbaar. Na installatie zal het netwerk verbonden worden met de camera’s in Frankrijk, België en Noord-Duitsland.

De FRIPON-camera’s hebben al bewezen dat ze vuurbollen kunnen detecteren. De dataverwerking, waaronder het berekenen van de banen ten opzichte van de aarde, banen in het zonnestelsel en mogelijke strooivelden van meteorieten moeten nog gefinancierd worden door onze Franse collega’s. ESA is bij FRIPON betrokken vanuit een aanpalend wetenschappelijk oogpunt en we kunnen snel meldingen te krijgen als er een vuurbol heeft plaatsgevonden.

De camera’s zijn bewezen robuust en betrouwbaar te zijn en we verwachten dat we heel Nederland kunnen afdekken in 2019. Dit netwerk is ook complementair aan het CAMS-netwerk (dat is geoptimaliseerd voor zwakke meteoren), of de bestaande camera’s in het Duitse ‘EN’ netwerk die weer geschikter zijn voor positionering maar te kort komen in tijdsbepaling.

We zoeken meer gastlocaties voor de plaatsing van een camera, dus ben je geïnteresseerd om bruikbare gegevens te helpen verzamelen, neem dan contact op met de auteurs.


Detlef Koschny en Andrea Toni zijn werkzaam bij de Meteor Research Group van het Science Support Office van de Europese ruimtevaartorganisatie ESA, gevestigd bij het technische ruimtevaartcentrum ESTEC in Noordwijk.

Vertaling: Sebastiaan de Vet

Vuurbol 29 juni ook vastgelegd door HHEBBES

Wederom trok een vuurbol in het weekend de aandacht van enkele honderden mensen in Nederland en daarbuiten. Op vrijdag 29 juni omstreeks 23:30 verscheen er een vuurbol boven Nederland.

Zeker 200 meldingen kwamen binnen bij het internationale vuurbolmeldpunt van de IMO, waarvan een groot aantal via de website van de Werkgroep Meteoren werden doorgegeven. Op basis van ooggetuigenverslagen trok de vuurbol over de provincies Utrecht en Noord-Holland. Ook de allsky-camera HHEBBES! op het dak van sterrenwacht Sonnenborgh in Utrecht legde de vuurbol in prachtig detail vast.

De vuurbol van 29 juni 23:30 CEST. Deze werd vastgelegd door de HHEBBES! allsky-camera. Foto: Felix Bettonvil.

Met behulp van de visuele waarnemingen van zeker 200 mensen werd de onderstaande kaart gemaakt van het pad van de vuurbol.

Pad van de vuurbol op 29 juni 2018. Deze ‘heatmap’ laat zien waar de concentraties van waarnemers zich bevonden en toont tevens een eerste inschatting van het pad van de vuurbol op basis van de waarnemingen die ze doorgaven via de website. Kaart: IMO

De ‘Foo Fighters’ vuurbol van 16 juni

Op zaterdagavond 16 juni verscheen een vuurbol omstreeks 23:11 in de diepe schemering. De vuurbol was een extra opvallende verschijning omdat van de bolide tijdens het optreden van de Foo Fighters langs Pinkpop scheerde.

Rond 23:11 trad een meteoroïde de atmosfeer boven België binnen die op spectaculaire wijze uiteenbrak tijdens zijn korte vlucht door de atmosfeer. Zo’n 200 ooggetuigen hebben inmiddels via het internationale vuurbolmeldpunt hun waarneming doorgegeven.  Uit de automatische analyse van deze waarnemingen blijkt dat de vuurbol ruwweg van zuidoost naar noordwest over de Belgische Ardennen trok en in de buurt van de Belgische stad Luik uitdoofde.

Heatmap van vuurbolmeldingen. Na de verschijning van de ‘Foo Fighters vuurbol’ zijn er bij het internationale vuurbolmeldpunt al zo’n 200 meldingen binnengekomen,  een groot deel daarvan kwam binnen via de website van de Werkgroep Meteoren.

 

Verschillende meteoorwaarnemers gaven in de dagen na de vuurbol toelichting in de media over de vuurbol. Zondag berichtte o.a. RTL Nieuws en NOS over de vuurbol en maandag maakte EditieNL een kort exposé. Wat de heldere meteoor extra markant maakte, was de verschijning tijdens het optreden van de Foo Fighters op Pinkpop in Limburg. Op de heatmap van de waarnemingen is deze locatie ook duidelijk te zien (zie het bovenstaande kaartje).

De vuurbol tijdens het optreden van de Foo Fighters op Pinkpop

Tweets en beelden van de vuurbol

De Duitse astronoom Uwe Reichert fotografeerde de vuurbol naast de maan en planeet Venus, een goede illustratie dat we over een vuurbol mogen spreken aangezien de vuurbol helderder is dan de planeet Venus.

 

In zijn opname van Reichert zijn ook details van de fragmentatie zichtbaar, wat een opsplitsing lijkt te zijn in een viertal fragmenten.

 

De vuurbol verscheen in de schermering nog voordat veel meteoren- en vuurbolcamera’s actief waren. Meteoorwaarnemer Marco Langbroek bepaalde daarom op basis van twee beschikbare foto’s een ruwe locatie van de vuurbol.